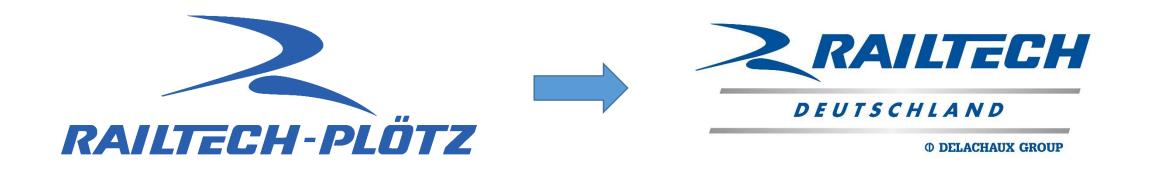


DEUTSCHLAND

O GROUPE DELACHAUX


Railtech Deutschland

A new strong Brand for Success, Reliability and Continuity

DEUTSCHLAND

O GROUPE DELACHAUX

A well known brand for quality and reliability merge into a new one!

What are the changes, reasons and advantages for you in the future?

New Management Team:

May 2015 a new Managing Director was set in place.

Dr. Joachim Krägeloh

Age: 49

PHD in Metallurgy and Steelmaking

- 20 years experience in steel business
- Specialist for Quality, Processes and Scientific Studies

July 2015 – Technical Service reinforced:

Michael Liddell

Age: 49

Acknowledged and certified Welding Specialist

- 35 years welding experience (WIG, MAG, Arc Welding, etc.)
- 19 years experience in AT welding
- Specialist for AT-Process, Development and for specific welding problems

Railtech Deutschland -

The new strong Brand for further Success, Reliability and Continuity

DEUTSCHLAND

O GROUPE DELACHAUX

Since 2006 – "well known" Technical Sales:

Maciej Palka

Age: 35

Acknowledged Sales Specialist

- 15 years experience in AT welding and equipment
- Specialist for the polish market, for welding as well as for specific welding problems

Overview Changes:

- Brand:
- New Logo (but still registered as Rolf Plötz Polska)

• Process:

- New Crucible Design
- New Mould Design

• Mould Production:

- New and optimized industrial production process for moulds

• Advanced Quality Management:

- FMEA (internal customer/supplier relationship
- Process Control with 6 Sigma
- Optimized internal/external claim management

DEUTSCHLAND

O GROUPE DELACHAUX

Railtech Deutschland -

The new strong Brand for further Success, Reliability and Continuity

DEUTSCHLAND

O GROUPE DELACHAUX

• Research and Development:

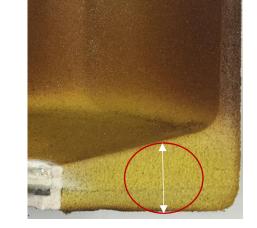
- Standard Quality testing acc. EN14730
- Fatigue Testing
- SEM Microscopy
- Know How Transfer with Railtech Welding & Equipment
- Engineering With RWE
- FEM-Modelling of the casting process just implemented
- Present in the all important European Norm and welding committees
- Larger and optimized stock in Germany:
- Stock increase for short term delivery (< 5 days)
- Customized stock management for more flexibility

• Brand:

- We are part of the big and successful Railtech family
- We all participate of the experience and knowledge of RWE but without losing our own identity and philosophy
- Better financial security for our partners for major projects

• Process:

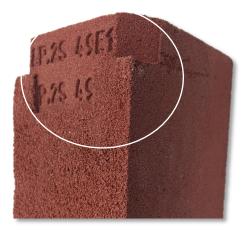
- New Product Design – SoWoS-P:


- Optimized handling and safety
- Corporate Railtech design
- Underlining our new identity
- Professional industrial design

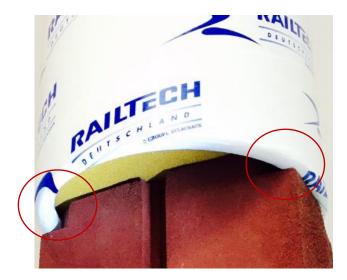
Important features as portion-weight, chemical composite, technical labeling, welding behavior and especially the mechanic-technological properties are according to the homologation from 06.03.2009 and our recent WPQR.

- thicker paper drum
- no gravel
- 1 kg lighter
- same stability
- tight fit against movement (save transport)

- thicker base
- higher stability against
 impact to gravel in track
 (damage prevention)



- minus 8 mm diameter
- min. 20 mm crimping
- good distance to gravel in track (damage prevention)
- Exact positioning guidance


RAILTECH

O GROUPE DELACHAU

- Newly developed automatic, integrated positioning system
- save and stable stand even in bends and slanted mold positions
- always centered
- No extra positioning system necessary
- Good visible labelling

• Mould Production – Sopron Hungary:

New optimized setup for mould production (8 bar) for advanced quality and better productivity.

- New tools system for high pressure and higher density
- Optimized quality due to 8 bar shooting pressure
- Modern and "state of the art" process for mould manufacturing with doubling the productivity
- > Highly flexible production planning for short term delivery

• Advanced Quality Management:

- FMEA – (Failure Mode and Effect Analyse):

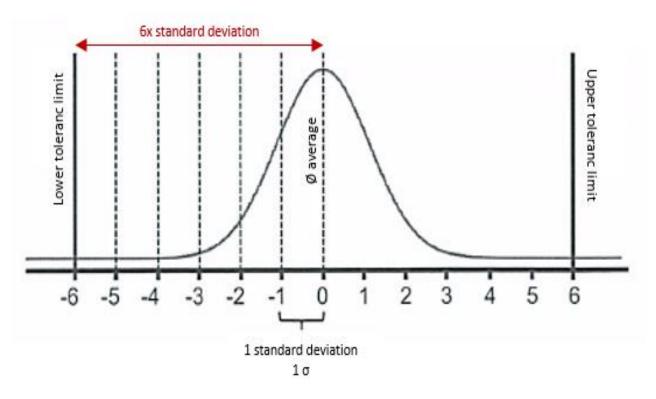
"Highly structured method to verify process risks and define their measures."

Implemented for all main production processes at Railtech Deutschland Group (portion/moulds) <u>Process FMEA</u>

Production:	Manufacturing of AT Portions						Date:			
No. Main Step	No.	Partial Step	Nr.	Failure		Possibility 1=low;	Detection Probability 1=high; 6=low	and the second se	Measures	RPN

- Process Map with single steps
- Failure analyze of each step
- Defining the risk priority of each failure
- Defining the failure possibility of each failure
- Defining the probability of detection
- Defining measures for high Risk Priority Numbers (RPN)

Worst Case (high value of RPN) is a failure with a high probability but hard to detect by the worker and cause a high inconvenience for the customer (RPN > 100 – 216)



- **Process Control with 6 Sigma:**

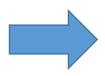
6 Sigma is a dedicated and powerful method for advanced quality and process optimizing.

6 Sigma was invented in 1970's by Motorola and became famous through General Electric's CEO Jack Welch who implemented this as a general quality strategy at GE.

6 Sigma based on the vision of "zero failure" – strategy. That means that every process has to achieve the acceptance criteria of the customer (plus/minus process tolerance) within +/- 6 times the standard deviation.

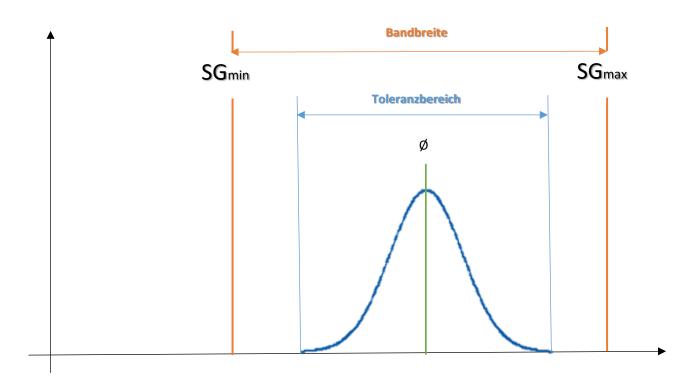
For an uncontrolled process which is less than 6 σ (6 times the standard deviation) the likelihood for failure is:

Sigma Level [σ]	Probability for good parts [%]	Probability for defective parts [%]	Loss [ppm]	
1	30.9	69.1	691462	
2	69.1	30.9	308538	
3	93.3	6.7	66807	
4	99.38	0.62	6210	
5	99.977	0.023	233	
6	99,9997	0.00034	3.4	$\langle \rangle$


Structure:

Problem > 1. D = Define > 2. M = Measure > 3. A = Analyze > 4. I = Improve > 5. C = Control > Solution

One of the most important quality feature > chemical analyze of the weld


Too much deviation of the analyze means:

- Instable mechanic-technological properties (hardness, ductility, etc.)
- Risk of deviation to rail analyze
- Increase risk of segregations in the molten phase
- Increase risk of fatigue

Investigation of the process capability of our chemical analyze

1st step Define:

Requirements for analyze acc. EN 14730-1

Tabelle 7 — Chemische Komponenten

RAILTECH

O GROUPE DELACHAUX

DEUTSCHLAND

	Erlaubter %			Schienen-Stahlsorte	
Element	Minimum	• Maximum	Toleranzbereich	EN 13674-1	
Kohlenstoff	0,30	0,55	±0,12	R200	
	0,35	0,70	±0,12	R220	
	0,40	0,75	± 0,12	R260, R260Mn	
	0,50	0,85	± 0,12	R320Cr, R350HT, R350LHT	
Silizium	0,00	1,20	± 0,25	alle	
Mangan	0,40	1,00	± 0,20	R200	
	0,45	1,20	± 0,20	R220	
	0,50	1,40	± 0,20	R260, R320Cr, R350HT, R350LHT	
	0,50	1,60	±0,20	R260Mn	
Phosphor	0,00	0,035	-	alle	
Schwefel	0,00	0,030	_	alle	
Chrom	0,00	0,20	_	R200, R220, R260, R260Mn	
	0,00	0,80	±0,20	R320Cr, R350HT, R350LHT	
Molybdän	0,00	0,10	_	alle	
Nickel	0,00	0,10	_	alle	
Aluminium	0,02	0,60	±0,20	alle	
Kupfer	0,00	0,20	_	alle	
Zinn	0,00	0,02	_	alle	
Antimon	0,00	0,02	_	alle	
Titan	0,00	0,05	_	alle	
Niob	0,00	0,01	_	alle	
Vanadium	0,00	0,25	_	R200, R220, R260, R260Mn	
	0,00	0,45	_	R320Cr	
	0,00	0,65	_	R350HT, R350LHT	

2nd step Measure:

1st: Analyze of short term behavior > 25 welds in a row with the same lot of:

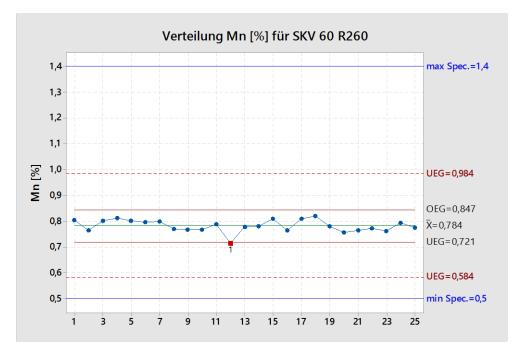
Iron oxide, Aluminum, Manganese, Cast Iron

Goal: A better understanding for the main process stability of the recipte

2nd: Analyze of long term behavior > 100 welds of the previous years analyzed with shifting lots of:

Iron oxide, Aluminum, Manganese, Cast Iron

Goal: Comparison with short term analyze and finding the real process drifts

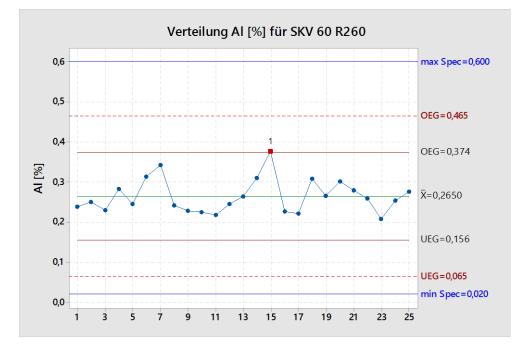

3rd: Defining control parameters for daily quality control

Carbon [%]:

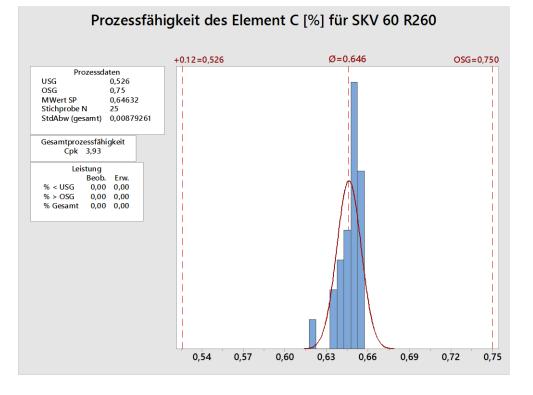
Manganese [%]:

RAILTECH

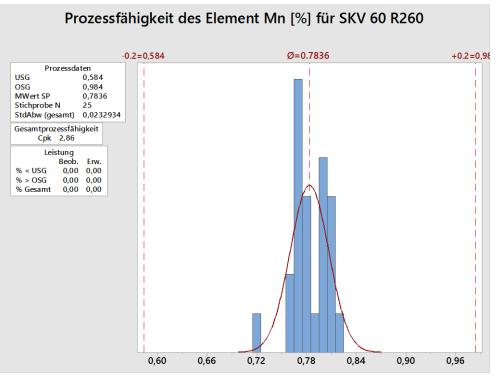
O GROUPE DELACHAUX


DEUTSCHLAN

DEUTSCHLAND


O GROUPE DELACHAUX

Aluminum [%]:



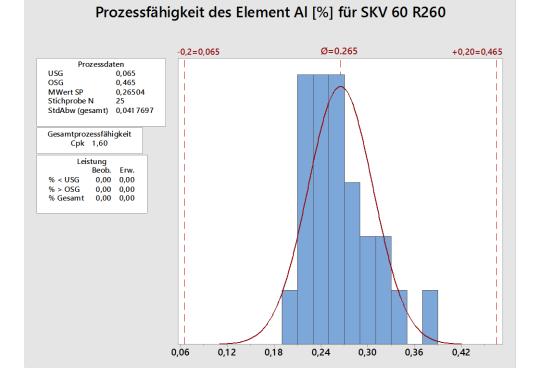
3rd step Analyze:

Carbon [%]:

Manganese [%]:

RAILTECH

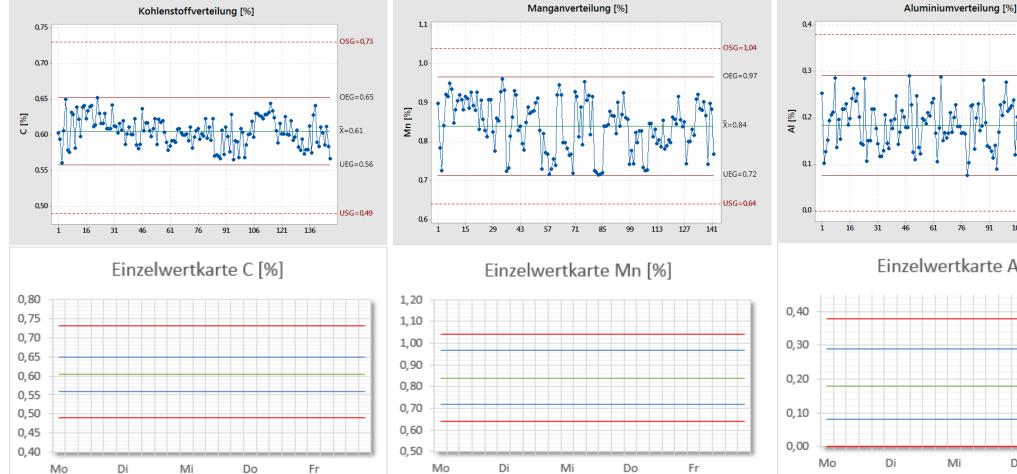
O GROUPE DELACHAUX


DEUTSCHLAN

Highly capable process; easily adjustable > 6 Sigma achievable

O GROUPE DELACHAUX

Aluminum [%]:

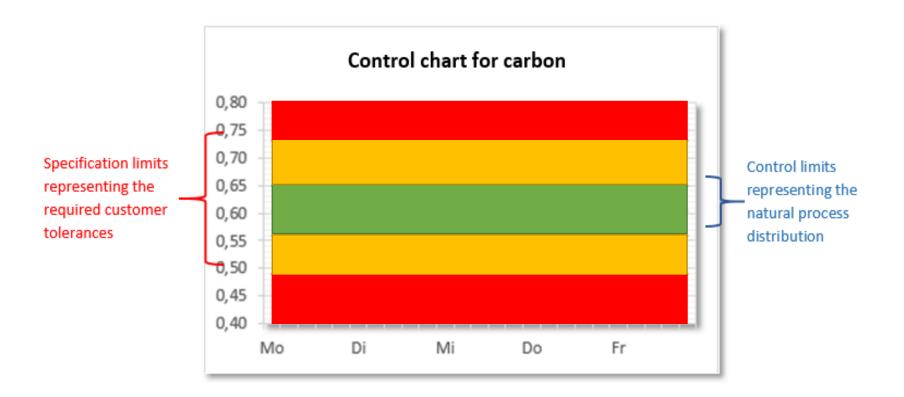

Due to a capable behavior of all elements with regard to the EN 14730 the **4**th **step Improvement** was not necessary...


Capable process; adjustable > 4 Sigma achievable

5th step Control:

Results of long term behavior and derived control chart

Mi

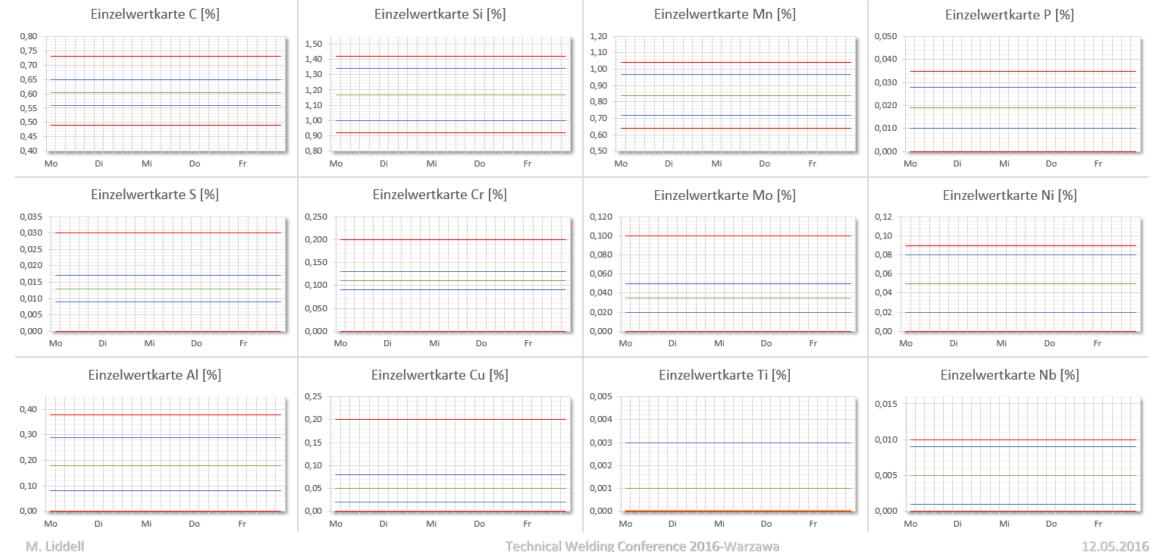

Do

Fr

DEUTSCHLAND

© GROUPE DELACHAUX

Internal Quality Levels:


- S1 = range between control limits > No reaction
- S2 = range between control limits and specification limits > analyzing and adjustment of process
- S3 = range beyond specification limits > full stop of production and analyzing

O GROUPE DELACHAUX

DEUTSCHLA

Daily control of the production lots with help of the control charts:

12.05.2016

- Optimized internal/external claim management

For all external customer deviations as well as for internal claims (internal customer/supplier relationship) a well known state of the art process is used > 8D- Reporting.

8D- Reporting was formally invented by the automotive industry and takes care that the problem is analyzed in a structured manner and solved sustainable for the future.

- 1st Do: Define Team and goal
- 2nd Do: Describe Problem
 - Who
 - How
 - Why
 - Where
 - When

3rd Do: Immediate Corrective Actions for the customer

DEUTSCHLAND

O GROUPE DELACHAUX

8D – R		
Auftragsnummer/Order-No.;	Name:	Z RAILTECH
Änderungstand/Revision-No.;	Datum/Date;	OEUTSCHLAND o DELACIAUX GROUP

1. Team			
a) Teammitgli Members	ieder/		
b) Teamziel/Ge	oal:		

2. Problem -	Beschreibung / Problem Description
a) Artikelnr. / Article No:	
b) Kunde/ Customer:	
c) Beschreibung/ Describtion:	Wer? Wer ist davon betroffen? Wer hat es (nicht-) entdeckt? Who is affected? Who didn 't detected the failure?
	Wie/Was? Was für eine Art von Problem ist es? What kind of problem is it?
	Warum? Warum ist es ein Problem? Why this is a problem?
	Wo? Wo wurde es (nicht-) entdeckt? Wo wurde es verursacht? Where it wasn 't detected? Where was it induced?
	Wann? Wann wurde es entdeckt? Seit wann besteht das Problem? When does it was detected? Since when the problem occurs?
d) Zusammenfass Summary:	sung/
3. Sofortmaßı	nahme / Corrective Action
a) Beschreibung/ Description:	

Railtech Deutschland –

The new strong Brand for further Success, Reliability and Continuity

DEUTSCHLAND

O GROUPE DELACHAUX

4th Do: Root Cause Analyze 8D - Report 8D - Report RAILTECH RAILTECH Auftragsnummer/Order-No. Name. Auftragsnummer/Order-No. Name DEUTSCHLAND DEUTSCHLAND Änderungstand/Revision-No. Datum/Date; Änderungstand/Revision-No.; Datum/Date: O DELACILAUX GROUP O DELACILAUX GROUP a) Description Root Cause 4. Fehlerursache / Root Cause 5. Abstellmaßnahme / Preventive Action b) Ishikawa (Fishbone – a) Beschreibung/ Descriteround Description: Description: Diagram) c) 5 Why - Analyzation b) Ursachen-Wirkung Diagramm / Cause & Effect Chart How does it happen? Why it was not detected? Wie ist es passiert? Warum wurde es nicht entdeckt? Material Machine People Material Machine 5th Do: Defining preventive Effect/Wirkung actions 6. Wirksamkeit der Maßnahmen überprüfen / Validation Method Measure Measure Environment Description: Environment thod (Max, 3 Causes on each side/Max, 3 Verursacher auf jeder Seite) 6th Do: Validation of measures e) 5 - Way Analysis Warum ist das passiert? Why does it happen? 2. Warum ist das passiert? Why does it happen? 7. Fehlerwiederholung verhindern / Prevention 3. Warum ist das passiert? Why does it happen? a) Wo fließen die 7th Do: Scanning comparable Erkenntnisse ein / 4. Warum ist das passiert? Why does it happen? Lessons learned: processes for 5. Warum ist das passiert? Why does it happen? prevention b) Ähnliche Prozesse 8. Gratuliere dem Team / Congratulate Your Team bei denen der Fehler auftreten a) Abschlussdatum / könnte / Date of closure: 8th Do: Finalizing Analyze Similar Processes b) Ersteller / possibly affected: Created by

• Research and Development:

- Standard Quality testing acc. EN14730:

All vital tests required by the EN 14730 can be done in our laboratory in-house as:

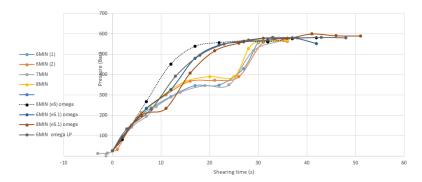
- spectroscopy for all major elements
 - hardness test (HV and HB)
 - bending test
 - macro-and microscopy (500 x) incl. metallographic analyze
 - UT testing
 - penetration testing
 - magnetic particle testing
 - crack testing for moulds

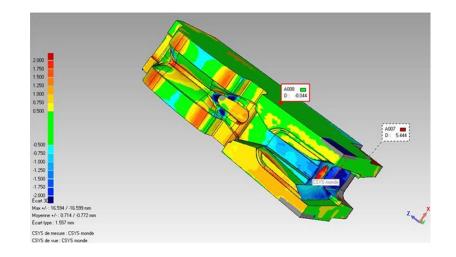
RAILTECH

DEUTSCH

- Fatigue Testing acc. to EN 14730:

With our completely refurbished fatigue machine we can perform long time fatigue tests up to 5 Mio. cycles acc. the EN 14730 ("Past the Post" – process).




- SEM – Microscopy

- Know How Transfer with RWE experts worldwide
- Engineering With RWE engineers
- FEM-Modelling of the casting process just implemented
- Present in the all important European Norm and welding committees

Shearing strengh (PLOEZT Shearing machine)

© GROUPE DELACHAUX

• Larger and optimized stock in Germany:

Capacity increase for now > 20.000 kits and tooling

- Stock increase for short term delivery (< 5 days)
- Customized stock management for more flexibility
- FIFO (first in, first out) process implemented

DEUTSCHLAND

O GROUPE DELACHAUX

Thank you very much for your attention !!

Questions?